# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Ethyl 5-methyl-4-oxo-3-phenyl-2-propylamino-3,4-dihydrothieno[2,3-*d*]pyrimidine-6-carboxylate

## Ai-Hua Zheng,<sup>a</sup> Yan-Mei Ren<sup>b</sup> and Jing Xu<sup>a\*</sup>

<sup>a</sup>Institute of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China, and <sup>b</sup>Clinical Laboratory, Zhushan Center for Disease Control and Prevention, Shiyan 442000, People's Republic of China Correspondence e-mail: jxu6686@yahoo.com.cn

Received 14 August 2009; accepted 23 August 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.053; wR factor = 0.136; data-to-parameter ratio = 18.6.

The title compound,  $C_{19}H_{21}N_3O_3S$ , was synthesized *via* the aza-Wittig reaction of functionalized iminophosphorane with phenyl isocyanate under mild conditions. In the molecule, the fused thienopyrimidine ring system is essentially planar, with a maximum deviation of 0.072 (2) Å, and makes a dihedral angle of 60.11 (9)° with the phenyl ring. An intramolecular  $C-H\cdots O$  hydrogen bond is present. The crystal packing is stabilized by intermolecular  $N-H\cdots O$  and  $C-H\cdots O$  hydrogen bonds.

#### **Related literature**

For the preparation and biological and pharmaceutical activities of pyrimidinone derivatives, see: Modica *et al.* (2004); Panico *et al.* (2001). For the biological activity of thienopyrimidine derivatives, see: Ding *et al.* (2004).



#### **Experimental**

Crystal data  $C_{19}H_{21}N_3O_3S$   $M_r = 371.45$ Orthorhombic,  $P2_12_12_1$ a = 8.1682 (2) Å

b = 14.1247 (3) Å c = 16.0672 (5) Å V = 1853.73 (8) Å<sup>3</sup> Z = 4 Mo  $K\alpha$  radiation  $\mu = 0.20 \text{ mm}^{-1}$ 

#### Data collection

Bruker SMART 4K CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\rm min} = 0.969, T_{\rm max} = 0.980$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$   $wR(F^2) = 0.136$  S = 1.134472 reflections 241 parameters H atoms treated by a mixture of indexeduction dependent on the sector index

independent and constrained refinement 10064 measured reflections

 $0.16 \times 0.12 \times 0.10 \ \mathrm{mm}$ 

T = 298 K

4472 independent reflections 4226 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.031$ 

 $\begin{array}{l} \Delta \rho_{max} = 0.39 \mbox{ e } \mbox{ \AA}^{-3} \\ \Delta \rho_{min} = -0.37 \mbox{ e } \mbox{ \AA}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 1861 \mbox{ Freidel pairs} \\ \mbox{ Flack parameter: } 0.08 (10) \end{array}$ 

# Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$               | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------|----------|-------------------------|--------------|--------------------------------------|
| C6-H6···O2 <sup>i</sup>        | 0.93     | 2.58                    | 3.359 (3)    | 142                                  |
| $C2-H2\cdot\cdot\cdot O2^{ii}$ | 0.93     | 2.50                    | 3.432 (3)    | 177                                  |
| $N3-H3A\cdotsO1^{iii}$         | 0.88 (3) | 2.08 (3)                | 2.863 (3)    | 147 (3)                              |
| C16−H16C···O2                  | 0.96     | 2.31                    | 3.000 (3)    | 128                                  |
| 6                              | (1)      | 1. 1. Z                 | S) 1 1       | 3. (!!!)                             |

Symmetry codes: (i)  $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$ ; (ii)  $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$ ; (iii)  $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$ .

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

We gratefully acknowledge financial support of this work by the Key Science Research Project of Hubei Provincial Department of Education (No. D20092406) and the Science Research Project of Yunyang Medical College (No. 2007QDJ14).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2864).

#### References

Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.

Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.

Modica, M., Romeo, G., Materia, L., Russo, F., Cagnotto, A., Mennini, T., Falkay, G. & George, F. (2004). *Bioorg. Med. Chem.* 12, 3891–3901.

Panico, A., Cardile, V., Santagati, A. & Gentile, B. (2001). Farmaco, 56, 959– 964.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2009). E65, o2266 [doi:10.1107/S1600536809033595]

## Ethyl 5-methyl-4-oxo-3-phenyl-2-propylamino-3,4-dihydrothieno[2,3-d]pyrimidine-6-carboxylate

### A.-H. Zheng, Y.-M. Ren and J. Xu

#### Comment

The derivatives of thienopyrimidine are of great importance because of their remarked biological properties (Ding *et al.*, 2004). We have recently focused on the synthesis of fused heterocyclic systems containing a fused pyrimidinone ring moiety using aza-Wittig reaction. The title compound, may be used as a new precursor for obtaining bioactive molecules and its structure is reported here, Fig.1. The bond lengths and angles are unexceptional. The thienopyrimidinone rings are closer to coplanarity with maximum deviations 0.072 (2)Å and -0.058 (2)Å for C10 and N1, respectively. The phenyl ring is twisted with respect to the pyrimidinone ring, with a dihedral angle of  $60.11 (9)^{\circ}$ . Intramolecular C—H…O and intermolecular C—H…O, N—H…O hydrogen bonds interactions are present, which stabilize the conformation of the molecule and the crystal structure (Table 1).

#### Experimental

To a solution of diethyl 5-((phenylimino)methyleneamino)- 3-methylthiophene-2,4-dicarboxylate(3 mmol) in anhydrous dichloromethane (15 ml) was added propan-1-amine (3 mmol). After stirring the reaction mixture for 1 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 5 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound in a yield of 78%. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (1:1  $\nu/\nu$ ) at room temperature.

#### Refinement

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å,  $U_{iso}$ =1.2 $U_{eq}$  (C) for  $Csp^2$ , N—H = 0.88 Å,  $U_{iso}$ =1.2 $U_{eq}$  (N) for NH, C—H = 0.97 Å,  $U_{iso}$  = 1.2 $U_{eq}$  (C) for CH<sub>2</sub>, C—H = 0.96 Å,  $U_{iso}$  = 1.5 $U_{eq}$  (C) for CH<sub>3</sub>.

#### **Figures**



Fig. 1. ORTEP drawing and atom labelling scheme of the title compound with thermal ellipsoids drawn at the 50% probability level.

## Ethyl 5-methyl-4-oxo-3-phenyl-2-propylamino-3,4- dihydrothieno[2,3-d]pyrimidine-6-carboxylate

## Crystal data

| $C_{19}H_{21}N_3O_3S$          | $F_{000} = 784$                                       |
|--------------------------------|-------------------------------------------------------|
| $M_r = 371.45$                 | $D_{\rm x} = 1.331 {\rm ~Mg~m^{-3}}$                  |
| Orthorhombic, $P2_12_12_1$     | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: P 2ac 2ab         | Cell parameters from 4659 reflections                 |
| a = 8.1682 (2) Å               | $\theta = 2.5 - 28.0^{\circ}$                         |
| b = 14.1247 (3) Å              | $\mu = 0.20 \text{ mm}^{-1}$                          |
| c = 16.0672 (5) Å              | <i>T</i> = 298 K                                      |
| V = 1853.73 (8) Å <sup>3</sup> | Block, colourless                                     |
| Z = 4                          | $0.16 \times 0.12 \times 0.10 \text{ mm}$             |

#### Data collection

| 4472 independent reflections           |
|----------------------------------------|
| 4226 reflections with $I > 2\sigma(I)$ |
| $R_{\rm int} = 0.031$                  |
| $\theta_{\text{max}} = 28.3^{\circ}$   |
| $\theta_{\min} = 1.9^{\circ}$          |
| $h = -10 \rightarrow 5$                |
| $k = -18 \rightarrow 18$               |
| $l = -21 \rightarrow 21$               |
|                                        |

#### Refinement

| Refinement on $F^2$                                            | Hydrogen site location: inferred from neighbouring sites                            |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | H atoms treated by a mixture of independent and constrained refinement              |
| $R[F^2 > 2\sigma(F^2)] = 0.053$                                | $w = 1/[\sigma^2(F_o^2) + (0.0772P)^2 + 0.1133P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $wR(F^2) = 0.136$                                              | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| <i>S</i> = 1.13                                                | $\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$                                 |
| 4472 reflections                                               | $\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$                              |
| 241 parameters                                                 | Extinction correction: none                                                         |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1861 Freidel pairs                                |
|                                                                | F1 1 0.00 (10)                                                                      |

Secondary atom site location: difference Fourier map Flack parameter: 0.08 (10)

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x           | у            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|-------------|--------------|--------------|---------------------------|
| C1   | 0.2534 (2)  | 0.22884 (14) | 0.48554 (12) | 0.0322 (4)                |
| C2   | 0.3341 (3)  | 0.15050 (17) | 0.45355 (15) | 0.0412 (5)                |
| H2   | 0.3794      | 0.1052       | 0.4887       | 0.049*                    |
| C3   | 0.3457 (3)  | 0.14132 (19) | 0.36796 (15) | 0.0515 (6)                |
| H3   | 0.4008      | 0.0895       | 0.3457       | 0.062*                    |
| C4   | 0.2783 (4)  | 0.2063 (2)   | 0.31554 (15) | 0.0545 (6)                |
| H4   | 0.2864      | 0.1984       | 0.2582       | 0.065*                    |
| C5   | 0.1984 (3)  | 0.28367 (18) | 0.34767 (15) | 0.0502 (6)                |
| Н5   | 0.1530      | 0.3283       | 0.3119       | 0.060*                    |
| C6   | 0.1848 (3)  | 0.29565 (16) | 0.43303 (13) | 0.0388 (5)                |
| Н6   | 0.1304      | 0.3479       | 0.4547       | 0.047*                    |
| C7   | 0.3242 (3)  | 0.32075 (14) | 0.61007 (13) | 0.0347 (4)                |
| C8   | 0.3275 (3)  | 0.32060 (16) | 0.69897 (13) | 0.0358 (4)                |
| С9   | 0.2629 (3)  | 0.24251 (15) | 0.74015 (12) | 0.0374 (4)                |
| C10  | 0.1679 (2)  | 0.17242 (14) | 0.62462 (12) | 0.0342 (4)                |
| C11  | 0.3990 (3)  | 0.38959 (15) | 0.75391 (13) | 0.0362 (4)                |
| C12  | 0.3869 (3)  | 0.36077 (15) | 0.83528 (14) | 0.0407 (5)                |
| C13  | -0.0094 (3) | 0.03243 (17) | 0.62828 (15) | 0.0483 (6)                |
| H13A | -0.1188     | 0.0260       | 0.6055       | 0.058*                    |
| H13B | -0.0201     | 0.0488       | 0.6867       | 0.058*                    |
| C14  | 0.0757 (4)  | -0.0588 (2)  | 0.6213 (2)   | 0.0725 (9)                |
| H14A | 0.0157      | -0.1056      | 0.6532       | 0.087*                    |
| H14B | 0.1834      | -0.0526      | 0.6462       | 0.087*                    |
| C15  | 0.0958 (7)  | -0.0951 (3)  | 0.5329 (3)   | 0.1005 (15)               |
| H15A | -0.0083     | -0.1161      | 0.5121       | 0.151*                    |
| H15B | 0.1716      | -0.1471      | 0.5325       | 0.151*                    |
| H15C | 0.1368      | -0.0452      | 0.4981       | 0.151*                    |
| C16  | 0.4758 (4)  | 0.47961 (18) | 0.72536 (16) | 0.0507 (6)                |
| H16A | 0.3920      | 0.5227       | 0.7075       | 0.076*                    |
| H16B | 0.5486      | 0.4667       | 0.6798       | 0.076*                    |
| H16C | 0.5363      | 0.5074       | 0.7704       | 0.076*                    |
| C17  | 0.4320 (3)  | 0.41350 (18) | 0.91026 (15) | 0.0443 (5)                |
| C18  | 0.4227 (5)  | 0.4121 (2)   | 1.05795 (16) | 0.0689 (9)                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| H18A | 0.3688      | 0.4733       | 1.0586       | 0.083*       |
|------|-------------|--------------|--------------|--------------|
| H18B | 0.5391      | 0.4218       | 1.0662       | 0.083*       |
| C19  | 0.3562 (5)  | 0.3512 (3)   | 1.12406 (18) | 0.0761 (9)   |
| H19A | 0.2411      | 0.3419       | 1.1151       | 0.114*       |
| H19B | 0.3731      | 0.3809       | 1.1771       | 0.114*       |
| H19C | 0.4110      | 0.2911       | 1.1231       | 0.114*       |
| N1   | 0.2447 (2)  | 0.24077 (12) | 0.57496 (10) | 0.0340 (4)   |
| N2   | 0.1836 (2)  | 0.16896 (13) | 0.70577 (11) | 0.0393 (4)   |
| N3   | 0.0749 (2)  | 0.10894 (14) | 0.58518 (13) | 0.0422 (4)   |
| H3A  | 0.055 (3)   | 0.121 (2)    | 0.5323 (18)  | 0.051*       |
| 01   | 0.3846 (2)  | 0.38072 (11) | 0.56420 (9)  | 0.0453 (4)   |
| O2   | 0.4921 (3)  | 0.49108 (14) | 0.91163 (11) | 0.0578 (5)   |
| O3   | 0.3935 (3)  | 0.36454 (14) | 0.97886 (11) | 0.0609 (5)   |
| S1   | 0.29211 (8) | 0.25028 (4)  | 0.84614 (3)  | 0.04848 (17) |
|      |             |              |              |              |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|                 | $U^{11}$      | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----------------|---------------|-------------|-------------|--------------|--------------|--------------|
| C1              | 0.0379 (9)    | 0.0327 (10) | 0.0261 (9)  | -0.0042 (7)  | 0.0009 (7)   | 0.0019 (7)   |
| C2              | 0.0486 (12)   | 0.0380 (12) | 0.0369 (11) | 0.0050 (9)   | -0.0041 (9)  | 0.0002 (9)   |
| C3              | 0.0667 (15)   | 0.0487 (14) | 0.0391 (12) | 0.0029 (11)  | 0.0069 (11)  | -0.0120 (10) |
| C4              | 0.0743 (17)   | 0.0613 (16) | 0.0278 (10) | -0.0083 (14) | 0.0003 (11)  | -0.0038 (10) |
| C5              | 0.0619 (13)   | 0.0515 (13) | 0.0372 (11) | -0.0084 (11) | -0.0076 (11) | 0.0142 (11)  |
| C6              | 0.0430 (11)   | 0.0356 (11) | 0.0378 (11) | 0.0019 (9)   | -0.0006 (9)  | 0.0052 (8)   |
| C7              | 0.0427 (11)   | 0.0287 (9)  | 0.0327 (10) | 0.0026 (8)   | 0.0031 (8)   | -0.0027 (8)  |
| C8              | 0.0447 (11)   | 0.0326 (10) | 0.0301 (10) | -0.0012 (9)  | 0.0029 (8)   | -0.0024 (8)  |
| C9              | 0.0489 (11)   | 0.0390 (11) | 0.0242 (8)  | 0.0002 (10)  | -0.0013 (8)  | 0.0001 (8)   |
| C10             | 0.0439 (11)   | 0.0290 (10) | 0.0297 (10) | -0.0004 (8)  | 0.0015 (8)   | 0.0028 (8)   |
| C11             | 0.0412 (10)   | 0.0328 (10) | 0.0344 (11) | 0.0030 (8)   | 0.0017 (8)   | -0.0056 (8)  |
| C12             | 0.0498 (11)   | 0.0389 (11) | 0.0334 (11) | -0.0011 (9)  | 0.0002 (9)   | -0.0048 (9)  |
| C13             | 0.0618 (14)   | 0.0451 (13) | 0.0381 (12) | -0.0169 (11) | 0.0044 (11)  | 0.0009 (10)  |
| C14             | 0.079 (2)     | 0.0551 (17) | 0.083 (2)   | -0.0100 (15) | -0.0015 (17) | 0.0234 (16)  |
| C15             | 0.139 (4)     | 0.053 (2)   | 0.109 (3)   | -0.005 (2)   | 0.043 (3)    | -0.018 (2)   |
| C16             | 0.0734 (17)   | 0.0381 (12) | 0.0406 (13) | -0.0103 (11) | 0.0032 (11)  | -0.0060 (10) |
| C17             | 0.0517 (12)   | 0.0460 (13) | 0.0354 (11) | 0.0043 (10)  | -0.0032 (10) | -0.0104 (10) |
| C18             | 0.104 (2)     | 0.0697 (19) | 0.0329 (13) | -0.0100 (18) | -0.0062 (14) | -0.0123 (12) |
| C19             | 0.101 (2)     | 0.086 (2)   | 0.0413 (15) | 0.000 (2)    | -0.0002 (16) | -0.0025 (15) |
| N1              | 0.0460 (8)    | 0.0304 (8)  | 0.0258 (8)  | -0.0008 (7)  | 0.0016 (6)   | 0.0007 (6)   |
| N2              | 0.0547 (11)   | 0.0356 (9)  | 0.0276 (8)  | -0.0092 (8)  | -0.0007 (8)  | 0.0024 (7)   |
| N3              | 0.0570 (11)   | 0.0387 (10) | 0.0309 (9)  | -0.0101 (8)  | -0.0060 (8)  | 0.0028 (8)   |
| 01              | 0.0673 (10)   | 0.0378 (9)  | 0.0308 (8)  | -0.0124 (8)  | 0.0093 (7)   | 0.0004 (6)   |
| O2              | 0.0789 (12)   | 0.0515 (11) | 0.0429 (10) | -0.0127 (9)  | -0.0058 (9)  | -0.0113 (8)  |
| O3              | 0.0943 (14)   | 0.0570 (11) | 0.0313 (9)  | -0.0150 (10) | -0.0040 (9)  | -0.0089 (8)  |
| S1              | 0.0721 (4)    | 0.0474 (3)  | 0.0259 (2)  | -0.0128 (3)  | -0.0033 (2)  | 0.0012 (2)   |
|                 |               |             |             |              |              |              |
| Geometric parar | neters (Å, °) |             |             |              |              |              |

C1—C61.384 (3)C12—S11.751 (2)C1—C21.387 (3)C13—N31.456 (3)

| C1—N1     | 1.448 (2)   | C13—C14       | 1.468 (4) |
|-----------|-------------|---------------|-----------|
| C2—C3     | 1.385 (3)   | C13—H13A      | 0.9700    |
| С2—Н2     | 0.9300      | C13—H13B      | 0.9700    |
| C3—C4     | 1.362 (4)   | C14—C15       | 1.519 (5) |
| С3—Н3     | 0.9300      | C14—H14A      | 0.9700    |
| C4—C5     | 1.373 (4)   | C14—H14B      | 0.9700    |
| C4—H4     | 0.9300      | C15—H15A      | 0.9600    |
| C5—C6     | 1.386 (3)   | C15—H15B      | 0.9600    |
| С5—Н5     | 0.9300      | C15—H15C      | 0.9600    |
| С6—Н6     | 0.9300      | C16—H16A      | 0.9600    |
| C7—O1     | 1.226 (3)   | C16—H16B      | 0.9600    |
| C7—N1     | 1.420 (3)   | C16—H16C      | 0.9600    |
| С7—С8     | 1.429 (3)   | C17—O2        | 1.201 (3) |
| C8—C9     | 1.390 (3)   | C17—O3        | 1.339 (3) |
| C8—C11    | 1.439 (3)   | C18—O3        | 1.457 (3) |
| C9—N2     | 1.343 (3)   | C18—C19       | 1.471 (5) |
| C9—S1     | 1.723 (2)   | C18—H18A      | 0.9700    |
| C10—N2    | 1.311 (3)   | C18—H18B      | 0.9700    |
| C10—N3    | 1.335 (3)   | C19—H19A      | 0.9600    |
| C10—N1    | 1.401 (3)   | C19—H19B      | 0.9600    |
| C11—C12   | 1.373 (3)   | С19—Н19С      | 0.9600    |
| C11—C16   | 1.490 (3)   | N3—H3A        | 0.88 (3)  |
| C12—C17   | 1.463 (3)   |               |           |
| C6—C1—C2  | 120.7 (2)   | C13—C14—C15   | 114.8 (3) |
| C6—C1—N1  | 120.37 (18) | C13—C14—H14A  | 108.6     |
| C2—C1—N1  | 118.93 (18) | C15—C14—H14A  | 108.6     |
| C3—C2—C1  | 118.4 (2)   | C13—C14—H14B  | 108.6     |
| C3—C2—H2  | 120.8       | C15—C14—H14B  | 108.6     |
| С1—С2—Н2  | 120.8       | H14A—C14—H14B | 107.6     |
| C4—C3—C2  | 121.5 (2)   | C14—C15—H15A  | 109.5     |
| С4—С3—Н3  | 119.2       | C14—C15—H15B  | 109.5     |
| С2—С3—Н3  | 119.2       | H15A—C15—H15B | 109.5     |
| C3—C4—C5  | 119.7 (2)   | C14—C15—H15C  | 109.5     |
| C3—C4—H4  | 120.1       | H15A—C15—H15C | 109.5     |
| С5—С4—Н4  | 120.1       | H15B-C15-H15C | 109.5     |
| C4—C5—C6  | 120.5 (2)   | C11—C16—H16A  | 109.5     |
| С4—С5—Н5  | 119.8       | C11-C16-H16B  | 109.5     |
| С6—С5—Н5  | 119.8       | H16A—C16—H16B | 109.5     |
| C1—C6—C5  | 119.2 (2)   | C11—C16—H16C  | 109.5     |
| С1—С6—Н6  | 120.4       | H16A—C16—H16C | 109.5     |
| С5—С6—Н6  | 120.4       | H16B—C16—H16C | 109.5     |
| O1—C7—N1  | 119.66 (19) | O2—C17—O3     | 123.5 (2) |
| O1—C7—C8  | 126.5 (2)   | O2—C17—C12    | 125.6 (2) |
| N1—C7—C8  | 113.87 (18) | O3—C17—C12    | 110.8 (2) |
| C9—C8—C7  | 118.0 (2)   | O3—C18—C19    | 107.5 (3) |
| C9—C8—C11 | 113.54 (18) | O3—C18—H18A   | 110.2     |
| C7—C8—C11 | 128.3 (2)   | C19—C18—H18A  | 110.2     |
| N2—C9—C8  | 126.94 (19) | O3—C18—H18B   | 110.2     |
| N2—C9—S1  | 121.50 (16) | C19-C18-H18B  | 110.2     |

# supplementary materials

| C8—C9—S1                      | 111.54 (16) |      | H18A—C18—H18B              |              | 108.5        |
|-------------------------------|-------------|------|----------------------------|--------------|--------------|
| N2—C10—N3                     | 120.16 (19) |      | C18—C19—H19A               |              | 109.5        |
| N2-C10-N1                     | 123.25 (18) |      | C18—C19—H19B               |              | 109.5        |
| N3—C10—N1                     | 116.58 (18) |      | H19A—C19—H19B              |              | 109.5        |
| C12-C11-C8                    | 110 74 (19) |      | C18—C19—H19C               |              | 109.5        |
| C12—C11—C16                   | 125 2 (2)   |      | H19A—C19—H19C              |              | 109.5        |
| C8-C11-C16                    | 120.2(2)    |      | H19B—C19—H19C              |              | 109.5        |
| C11—C12—C17                   | 127.9 (2)   |      | C10—N1—C7                  |              | 121 80 (16)  |
| $C_{11} - C_{12} - S_{1}$     | 113.03 (16) |      | C10-N1-C1                  |              | 120.45 (16)  |
| $C_{17}$ $C_{12}$ $S_{1}$     | 118 88 (17) |      | C7-N1-C1                   |              | 117 67 (16)  |
| N3-C13-C14                    | 113.0 (2)   |      | C10-N2-C9                  |              | 115 30 (18)  |
| N3—C13—H13A                   | 109.0       |      | C10 - N3 - C13             |              | 122.80 (19)  |
| C14—C13—H13A                  | 109.0       |      | C10—N3—H3A                 |              | 115 4 (19)   |
| N3—C13—H13B                   | 109.0       |      | C13—N3—H3A                 |              | 121 2 (19)   |
| C14—C13—H13B                  | 109.0       |      | C17 - O3 - C18             |              | 116.2 (2)    |
| H13A_C13_H13B                 | 107.8       |      | C9 = S1 = C12              |              | 91 12 (11)   |
|                               | 0 ( (2)     |      | 6) 51 C12<br>81 C12 C17 C2 |              | 1 2 (2)      |
| $C_0 - C_1 - C_2 - C_3$       | 0.6 (3)     |      | S1 - C12 - C17 - O3        |              | 1.2 (3)      |
| NI - CI - C2 - C3             | -1/8.1(2)   |      | N2-C10-N1-C7               |              | -10.4(3)     |
| C1 - C2 - C3 - C4             | -0.9 (4)    |      | N3-C10-N1-C7               |              | 169.45 (18)  |
| $C_2 - C_3 - C_4 - C_5$       | 0.8 (4)     |      | N2-C10-N1-C1               |              | 166.03 (19)  |
| C3—C4—C5—C6                   | -0.5 (4)    |      | N3—C10—N1—C1               |              | -14.1 (3)    |
| C2_C1_C6_C5                   | -0.3(3)     |      | 01—C/—N1—C10               |              | -177.29 (19) |
| NI-CI-C6-C5                   | 178.4 (2)   |      | C8—C7—N1—C10               |              | 4.1 (3)      |
| C4—C5—C6—C1                   | 0.2 (4)     |      | OI—C/—NI—CI                |              | 6.2 (3)      |
| 01—C7—C8—C9                   | -175.2 (2)  |      | C8—C7—N1—C1                |              | -172.42 (17) |
| N1—C7—C8—C9                   | 3.3 (3)     |      | C6—C1—N1—C10               |              | 120.7 (2)    |
| 01                            | 0.8 (4)     |      | C2-C1-N1-C10               |              | -60.5 (3)    |
| N1—C7—C8—C11                  | 179.28 (19) |      | C6—C1—N1—C7                |              | -62.7 (3)    |
| C7—C8—C9—N2                   | -6.1 (3)    |      | C2-C1-N1-C7                |              | 116.0 (2)    |
| C11—C8—C9—N2                  | 177.4 (2)   |      | N3—C10—N2—C9               |              | -172.1 (2)   |
| C7—C8—C9—S1                   | 175.14 (16) |      | N1—C10—N2—C9               |              | 7.7 (3)      |
| C11—C8—C9—S1                  | -1.4 (2)    |      | C8—C9—N2—C10               |              | 0.5 (3)      |
| C9—C8—C11—C12                 | 0.4 (3)     |      | S1—C9—N2—C10               |              | 179.13 (17)  |
| C7—C8—C11—C12                 | -175.7 (2)  |      | N2-C10-N3-C13              |              | -1.6 (3)     |
| C9—C8—C11—C16                 | -179.8 (2)  |      | N1-C10-N3-C13              |              | 178.5 (2)    |
| C7—C8—C11—C16                 | 4.1 (4)     |      | C14—C13—N3—C10             |              | -100.7 (3)   |
| C8—C11—C12—C17                | -174.6 (2)  |      | O2—C17—O3—C18              |              | 2.3 (4)      |
| C16—C11—C12—C17               | 5.6 (4)     |      | C12—C17—O3—C18             |              | -176.2 (3)   |
| C8—C11—C12—S1                 | 0.8 (2)     |      | C19—C18—O3—C17             |              | 173.9 (3)    |
| C16—C11—C12—S1                | -179.1 (2)  |      | N2-C9-S1-C12               |              | -177.32 (19) |
| N3—C13—C14—C15                | -60.7 (4)   |      | C8—C9—S1—C12               |              | 1.53 (17)    |
| C11—C12—C17—O2                | -2.1 (4)    |      | C11—C12—S1—C9              |              | -1.33 (19)   |
| S1—C12—C17—O2                 | -177.2 (2)  |      | C17—C12—S1—C9              |              | 174.47 (19)  |
| C11—C12—C17—O3                | 176.3 (2)   |      |                            |              |              |
| Hydrogen-bond geometry (Å, °) |             |      |                            |              |              |
| D—H···A                       | L           | О—Н  | H···A                      | $D \cdots A$ | D—H···A      |
| C6—H6…O2 <sup>i</sup>         | 0           | 0.93 | 2.58                       | 3.359 (3)    | 142          |

| C2—H2···O2 <sup>ii</sup>                                                                                                 | 0.93     | 2.50     | 3.432 (3) | 177     |  |
|--------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------|---------|--|
| N3—H3A····O1 <sup>iii</sup>                                                                                              | 0.88 (3) | 2.08 (3) | 2.863 (3) | 147 (3) |  |
| С16—Н16С…О2                                                                                                              | 0.96     | 2.31     | 3.000 (3) | 128     |  |
| Symmetry codes: (i) $-x+1/2$ , $-y+1$ , $z-1/2$ ; (ii) $-x+1$ , $y-1/2$ , $-z+3/2$ ; (iii) $x-1/2$ , $-y+1/2$ , $-z+1$ . |          |          |           |         |  |

Fig. 1

